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ABSTRACT: The aim of this work is modeling a gasification process where a non-conventional biomass is used as 

fuel: hemp hurd residues. An equilibrium model of the gasification reaction was implemented in the PhytonTM software 

environment. Syngas composition, syngas higher heating value, tar production and gasification cold gas efficiency 

were evaluated at different value of biomass moisture starting from biomass ultimate analysis and reaction equivalence 

ratio (ER) value. The model is able to predict char and tar production as function of biomass composition, moisture 

and ER. A comparison with experimental data obtained from hemp hurd gasification was done to validate equilibrium 

model results. Gasification tests were performed using a low capacity lab-scale gasification reactor designed to use 

about 1 kg per hour of dry biomass fuel. Results show small errors between model results and experimental result.  

Several simulations were performed to assess the gasification dependency on selected boundary conditions like biomass 

moisture and ER of the gasifier.          
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1 INTRODUCTION 

 

Hemp global sector is a fast growing market, it is 

projected to grow from USD 4.6 billion in 2019 to USD 

26.6 billion by 2025 thanks to the large variety of possible 

applications hemp is involved into [1,2]. Textile industries 

as well as sustainable building companies are increasing 

the demand for hemp fiber [3]. 

The main by-products of hemp fiber production is 

hemp hurd: a lignocellulosic residues fragmented in small 

flakes with a variable length of 1-5 cm. The amount of this 

biomass is not negligible: literature reports an annual 

productivity in cold climate conditions of about 10 ton per 

hectare of dry matter including flowers and seeds that 

represent a small fraction of the whole plant. Hurd is 

commonly used as filler for construction material like tiles 

of bricks and it has a marker value of about 200 €/ton [3]. 

An alternative way to valorize hemp hurd is the utilization 

as fuel for combustion biomass facility [3].  

This work investigates the use of hemp hurd as fuel for 

gasification reactor. Gasification is a thermo-chemical 

reaction that converts a solid or liquid fuel into a gaseous 

fuel (syngas) using a gasifying agent and heat in sub-

stoichiometric environment [4]. Gasification has several 

advantages compared to other thermochemical processes 

like pyrolysis and combustion. First, gasification is the 

most efficient way to convert biomass to electrical energy 

[5,6], second, it covers a wide range of electrical power 

output requirement (from 1 kW to 1 MW) [4,6]. 

Gasification uses not-conventional biomass fuels thanks to 

some peculiar reactor designs and architectures [7-16]. 

Furthermore, commercial gasification systems not only 

convert solid biomass (usually wood chips) into electrical 

energy and heat but also produce biochar. Biochar consists 

of charcoal that is disposed from gasification and pyrolysis 

reactor. It is a highly recalcitrant form of carbon, for this 

reason its use as soil amendment as also the effect to 

convert the soil into an effective carbon sink [17,18].  

 The main problem that afflicts gasification systems is 

the uncontrolled tar production. Tar is mix of polycyclic 

aromatic hydrocarbons (PAHs) and it is a pollutant of the 

syngas stream because it can be dangerous for mechanical 

components of the gasification power plants. High is the 

tar amount high is the filtering effort needed to purify the 

syngas, however a low tar production below 1 g/Nm3 is 

difficult to reach with biomass residues because of high 

moisture, low higher heating content and high ash of the 

residue [4]. 

 In this paper an equilibrium model based on a general 

biomass gasification reaction was implemented in 

PhytonTM software environment. The model was validated 

using experimental data obtained from hemp hurd 

gasification test performed with a lab-scale fixed bed 

gasifier.  Furthermore, several simulations were done 

considering different gasification conditions varying 

biomass moisture and gasifier equivalence ratio.   

 

 

2 MATERIAL AND METHODS 

 

2.1 Biomass characterization 

Biomass moisture content was calculated according to 

UNI EN ISO 18134-1. Chemical composition of the 

organic part of a dried biomass sample were performed 

using the FLASH 2000 Organic Elemental CHNS-O 

Analyzer [19]. Biomass ash content was determined 

weighing a died sample before and after 8 hours muffle 

furnace calcination at 600 °C. Biomass higher heating 

value HHV [kJ/kg] were estimated through the 

Channiwala and Parikh correlation (Eq.1) [20] and 

biomass lower heating value LHV [kJ/kg]  was determined 

using Eq. 2  [4]. 

 

𝐻𝐻𝑉 = 349.1𝐶 + 1178.3𝐻 + 100.5𝑆 − 103.4𝑂
− 15.1𝑁 − 21.1𝐴𝑆𝐻  

(1) 

 

𝐿𝐻𝑉 = 𝐻𝐻𝑉 − ℎ𝑔 [(
9𝐻

20
) + (

𝑀

100
)]  (2)    

 

 

where C, H, S, O, N and ASH [% wt.] are respectively the 

mass percentages of carbon, hydrogen, sulfur, oxygen, 

nitrogen and ashes of the biomass calculated on a dry 

basis. hg [kJ/kg] is the latent heat of vaporization of water 

at ambient pressure and M [% wt.] is the moisture content 

of the biomass. Table I resumes the results of the previous 

analysis and Figure 1 show a hemp hurd biomass sample.  
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Table I: Hemp hurd characterization  

 

Variabile Value 

Biomass moisture M [% wt. ar] 10 

Ash amount ASH [% wt. dry] 7.38 

Carbon amount C [% wt. dry] 43.00 

Hydrogen amount H [% wt. dry] 5.58 

Sulphur amount S [% wt. dry] 0 

Oxygen amount O [% wt. dry] 3.58 

Nitrogen amount N [% wt. dry] 0.45 

Higher heating value HHV [MJ/kg dry]  16.94 

Lower heating value LHV [MJ/kg dry] 15.72 

 

 
 

Figure 1:  Hemp hurd biomass sample 

 

2.2 Equilibrium gasification modelling 

The following reaction developed by [21,22] is used to 

model the whole gasification: 

  

𝐶𝐻𝑥𝑂𝑦𝑁𝑧 + 𝑤𝐻2𝑂 + 𝑚(𝑂2 + 3.76𝑁2) = 𝑛𝐻2
𝐻2 +

𝑛𝐶𝑂𝐶𝑂 + 𝑛𝐶𝑂2
𝐶𝑂2 + 𝑛𝐻2𝑂𝐻2𝑂 + 𝑛𝐶𝐻4

𝐶𝐻4 + (1 −

𝛼𝑐)𝐶 + 𝑛𝑡𝑎𝑟𝐶𝐻𝑝𝑂𝑞 + (𝑧

2
+

3.76𝑚)𝑁2                                                                                    (3) 

 

where 𝐶𝐻𝑥𝑂𝑦𝑁𝑧 is the as-received biomass molecular 

formula, the subscripts x, y and z are evaluated through the 

following equations: 

 

𝑥 =
𝐻𝑀𝐶

𝐶𝑀𝐻
;               𝑦 =

𝑂𝑀𝐶

𝐶𝑀𝑂
;              𝑧 =

𝑁𝑀𝐶

𝐶𝑀𝑁
            (4) 

 
where C, H, O, N [% wt.] are the weight percentage of the 

basic elements in the biomass (taken from Table I); 𝑀𝑐 

[g/mol] is the carbon molar weight; 𝑀𝐻 [g/mol] is the 

hydrogen molar weight; 𝑀𝑂 [g/mol] is the oxygen molar 

weight and 𝑀𝑁 [g/mol] is the nitrogen molar weight. Other 

symbols in the Eq. 3 are: 𝑤 [molH2O/molbio] is a constant 

that depends on biomass moisture and it is calculated 

through Eq. 5; 𝑚 [molO2/ molbio] is a constant that depends 

on gasifier equivalence ratio ER and it is evaluated through 

Eq.6; 𝑛𝑖 [moli/molbio] is the i-th product gas molar amount 

per mole of inlet  biomass (i = H2; CO; CO2;  H2O; CH4); 

𝛼𝑐 is the carbon conversion factor that it calculated 

thorugh Eq. 7 fuction of gasification temperatute T [K] and 

ER [23]; 𝑛𝑡𝑎𝑟[moltar/molbio] is the molar amount of tar per 

mole of inlet biomass; 𝐶𝐻𝑝𝑂𝑞 is the tar molecular formula, 

in this paper we assume p = 1.003 and q = 0.33 as 

suggested by Tinaut et al. [24]. In the model 𝑛𝑡𝑎𝑟 is back-

calculated from the weight pecentage of tar in the total 

products 𝑊𝑡𝑎𝑟  given by Eq. 8 developed by Sadaka et al. 

[25]: 

 

𝑤 =
𝑀𝑊𝑏𝑖𝑜∙𝑀(100+𝐴𝑆𝐻)

100∙[𝑀𝑊𝐻2𝑂(1−𝑀
100⁄ )

                                                        (5) 

 

𝑚 = 𝐸𝑅 ∙ (1 +
𝑥

4
−

𝑦

2
)                                                             (6) 

 

𝛼𝑐 = 0.901 + 0.493(1 − 𝑒−𝐸𝑅+0.0003 𝑇)                              (7) 

 

𝑊𝑡𝑎𝑟 = 35.98 𝑒−0.00298 𝑇                                                 (8) 

 

From Eq. 3 several element balances can be written: 

 

Carbon: 

𝑛𝐶𝑂 + 𝑛𝐶𝑂2
+ 𝑛𝐶𝐻4

+ (1 − 𝛼𝑐) + 𝑛𝑡𝑎𝑟 − 1 = 0               (9) 

 

Hydrogen: 

2𝑛𝐻2
+ 2𝑛𝐻2𝑂 + 4𝑛𝐶𝐻4

+ 𝑛𝑡𝑎𝑟𝑝 − 𝑥 = 0                        (10) 

 

Oxygen: 

 𝑛𝐶𝑂 + 2𝑛𝐶𝑂2
+ 𝑛𝐶𝐻4

+ 𝑛𝑡𝑎𝑟𝑞 − 𝑦 = 0         (11) 

 

Furthermore using Eq. (8) the total mass balance can be 

written as follow: 

 

(𝑊𝑡𝑎𝑟/100) ∗ [𝑛𝐻2
𝑀𝐻2

+ 𝑛𝐶𝑂𝑀𝐶𝑂 + 𝑛𝐶𝑂2
𝑀𝐶𝑂2

+

𝑛𝐶𝑂2
𝑀𝐶𝑂2

+ 𝑛𝐶𝐻4
𝑀𝐶𝐻4

+ (1 − 𝛼𝑐)𝑀𝐶 + 𝑛𝑡𝑎𝑟𝑀𝑡𝑎𝑟 +

(𝑧

2
+ 3.76𝑚)] − 𝑛𝑡𝑎𝑟𝑀𝑡𝑎𝑟 = 0           (12) 

 

In this equilibrium model only two reactions are 

considered: 

 

Water gas shift:  𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2                    (13) 

 

Methanation: 𝐶 + 2𝐻2 ↔ 𝐶𝐻4                                             (14) 

 

The equilibrium constants for these reactions depend on 

reaction temperature:  

 

𝐾1 =
𝑛𝐶𝑂2𝑛𝐻2

𝑛𝐶𝑂 𝑛𝐻2𝑂
= 𝑒𝑥𝑝 {

4276

𝑇
− 3.96}          (15) 

 

𝐾2 =
𝑛𝐶𝐻4×𝑛𝑡𝑜𝑡𝑎𝑙

(𝑛𝐻2)
2

 
= 𝑒𝑥𝑝 {

7082.842

𝑇
− (6.567) 𝑙𝑛 𝑇 +

(7.467×10−3)×𝑇

2
−

2.167×10−6

6
𝑇2 +

0.702

2𝑇2 + 32.541}        (16) 

 

where 𝑛𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑛𝑖 + 𝑛𝑡𝑎𝑟𝑖  [mol/molbio] because the tar 

is considered in vapour phase inside the reactor. Knowing 

the reaction temperature T and the equivalence ratio ER, 

the system composed of Eqs. 9-10-11-12-15-16 can be 

solved to find the gasification products molar amount per 

mole of inlet biomass. However, reaction temperature can 

be also calculated from the molar enthalpy conservation 

equation (Eq. 19) considering the reactants at standard 

condition (25 °C and 1 atm). 
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ℎ𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 = ℎ𝑓𝑏𝑖𝑜

0 + 𝑤ℎ𝑓𝐻2𝑂

0 + 𝑚(ℎ𝑓𝑂2

0 + 3.76ℎ𝑓𝑁2

0 )    (17) 

 

ℎ𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = ∑ 𝑛𝑖 [ℎ𝑓𝑖

0 + ∫ 𝐶𝑝𝑖
𝑑𝑇

T

289
] +𝑖 𝑛𝑡𝑎𝑟[ℎ𝑓𝑡𝑎𝑟

0 +

𝑐𝑝,𝑡𝑎𝑟(𝑇 − 298)]+(1 − 𝛼𝑐)[ℎ𝑓𝐶

0 + 𝑐𝑝,𝐶(𝑇 − 298)]      (18) 

 

ℎ𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 = ℎ𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠                                                         (19) 

 

where ℎ𝑓𝑏𝑖𝑜

0  [kJ/kmol] is the biomass formation enthalphy 

at standard conditions calculated through Eq. 20 that takes 

into account a complete combustion of the biomass [21];  

ℎ𝑓𝑖

0  [kJ/kmol] is the i-th gas formation enthalphy at 

standard conditions [21]; 𝐶𝑝𝑖
 [kJ/(kmol K)] is the i-th gas 

specific heat at constant pressure [21]; ℎ𝑓𝑡𝑎𝑟

0 [kJ/kmol] is 

the tar formation enthalphy at standard conditions 

calculated through Eq. 20 [21]; 𝑐𝑝,𝑡𝑎𝑟 [kJ/(kmol K)] is the 

tar specific heat considered as polyatomic perfect gas at 

constant pressure; ℎ𝑓𝐶

0 [kJ/kmol] is the carbon formation 

enthalphy at standard conditions calculated through Eq. 20 

[21];  𝑐𝑝,𝑡𝑎𝑟 [kJ/(kmol K)] is the carbon specific heat 

considering carbon similar to graphite.  

 

ℎ𝑓𝑗

0 = 𝐿𝐻𝑉𝑗 + ∑ 𝑛𝑘 ∙ ℎ𝑓𝑘

0    𝑘                                                  (20) 

 

where j = biomass, tar, carbon; 𝐿𝐻𝑉𝑗 [kJ/kmol] is the fuel 

lower heating value; k = CO2; H2O; N2O is the combustion 

product; 𝑛𝑘 [mol/molj] is the molar amount of the product 

per mole of fuel; ℎ𝑓𝑘

0  [kJ/kmol] is the enthalphy of 

formation of the combustion products at standard 

conditions. 

Chemical balance and enthalpy balance are then linked 

togheter in a solution algorithm depicted in Figure 2.  
 

 
 

Figure 2: Solution algorithm 

 

The algorithm was implemented in PhytonTM software 

environment in order to estimate the following outputs: 

syngas molar composition 𝑥𝑖 [% mol. = % vol.] 

(considering water vapor or not); syngas higher heating 

value 𝐻𝐻𝑉𝑠𝑦𝑛𝑔𝑎𝑠 [MJ/Nm3] using Eq. 21 and considering 

the syngas as ideal gas; gasifier cold efficiency 𝜂𝑔𝑎𝑠,𝑐𝑜𝑙𝑑 

[%] using Eq. 22 and tar volumetric production rate 𝑣𝑡𝑎𝑟 

[g/Nm3] using Eq. 23 considering the syngas as ideal gas. 

 

𝐻𝐻𝑉𝑠𝑦𝑛𝑔𝑎𝑠 =  𝑥𝐻2
𝐻𝐻𝑉𝐻2

+ 𝑥𝐶𝑂𝐻𝐻𝑉𝐶𝑂 + 𝑥𝐶𝐻4
𝐻𝐻𝑉𝐶𝐻4

    (21) 

 

𝜂𝑔𝑎𝑠,𝑐𝑜𝑙𝑑 =  
𝐻𝐻𝑉𝑠𝑦𝑛𝑔𝑎𝑠𝑣𝑠𝑦𝑛𝑔𝑎𝑠

𝐻𝐻𝑉𝑏𝑖𝑜𝑀𝑏𝑖𝑜
             (22) 

 

𝑣𝑡𝑎𝑟 =  
𝑛𝑡𝑎𝑟𝑀𝑡𝑎𝑟

𝑣𝑠𝑦𝑛𝑔𝑎𝑠
            (23) 

 

where 𝐻𝐻𝑉𝐻2
 [MJ/Nm3] is the H2 volumetric higher 

heating value; 𝐻𝐻𝑉𝐶𝑂 [MJ/Nm3] is the CO volumetric 

higher heating value; 𝐻𝐻𝑉𝐶𝐻4
 [MJ/Nm3] is the CH4 

volumetric higher heating value; 𝑣𝑠𝑦𝑛𝑔𝑎𝑠 =

0.022414 𝑛𝑖𝑀𝑖 [Nm3/molbio] is the volume of syngas 

obtained from the gasification of 1 mole of biomass; 𝑀𝑏𝑖𝑜 

[g/mol] is the biomass molar weight.  

 

2.3 Experimental gasification facility 

The lab-scale gasifier used in the experimental (Figure 

3) was the “Femto Gasifier” [26]. During hemp hurd the 

gasification test the following variables were measured: 

volume of syngas produced through an indirect method 

that uses gas totalizer [26]; gas composition though gas 

chromatographic analysis of 2 gas samples; mass of 

biomass used through a scale. Gasification cold gas 

efficiency were calculated using Eq. 24.  

 

𝜂𝑔𝑎𝑠,𝑐𝑜𝑙𝑑 =
𝐻𝐻𝑉𝑆𝑦𝑛𝑔𝑎𝑠 𝑋  𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑦𝑛𝑔𝑎𝑠

𝐻𝐻𝑉𝑏𝑖𝑜  𝑋 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
         (24) 

 

 During the test 3 type K thermocouples connected to a 

Pyco TC-08 datalogger are used to monitor inlet air 

temperature, average gasification temperature and outlet 

syngas temperature.   
 

 
 

Figure 3: Femto Gasifier [26] 

 

 

3 RESULTS AND DISCUSSION 

 

Table II resumes the comparison between 

experimental data and model results concerning hemp 

hurd gasification. The comparison between syngas 

composition evaluated through the equilibrium model and 

through gas cromatography shows small differences 

probably given by the strong hyphotesis adopted in the 

equilibrium model and the unstable temperatures 

measured  during the gasification test (Figure 4).  

Figures 5,6,7 depict equilibrium model outputs at 

different ER and M values. The figures show a strong 

dependency of the gasifier output with the biomass 

moisture and the equivalence ratio (ER). Lower is the 

moisture better is the gasifier behavior in term of 
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efficiency, syngas HHV and tar production. However, a 

moisture value lower than 10% is acceptable in industrial 

application and do not create sensible inefficiencies. ER 

value is crucial to have a good cold gas efficiency, in fact 

for ER = 0.3 the best efficiency of about 59.5 % was 

estimated. This value is quite common for fixed bed 

gasifier that are design to work in these precise conditions. 

In practice, ER is very hard to set during gasification 

operation, in fact it depends on several factor such as 

biomass composition, particle dimensions and shape, 

moisture and syngas flow rate.  A good control system 

should be able to recognize this value during operation and 

adjust the working parameter in order to achieve ER = 0.3. 

As show in Figure 7, tar production is almost constant 

in the moisture range 0-20%, however tar strongly depends 

on ER value.  A high ER value (i.e. 0.4) decreases tar 

production, a low ER value (i.e. 0.2) increases tar 

production.  Again, a good compromise is ER = 0.3 where 

maximum efficiency is reached.  

 

Table II: Model Vs. Experimental results comparison  

 

Syngas 

composition 
Experimental test 

(gas chromatography) 

Model 

Dry basis Sample 

1 

Sample 

2 

Averag

e 

ER = 0.3 

H2 [% vol.] 13.1 11.9 11.9 20.8 

N2 [% vol.] 49.1 50.1 50.1 46.2 

CH4 [% vol.] 2.3 2.2 2.2 2.1 

CO [% vol.] 20.1 18.1 18.1 12.3 

CO2 [% vol.] 11.9 13.4 12.7 18.5 

HHV [MJ/Nm3] 5.1 4.7 4.9 4.4 

Cold gas efficiency Experiment Model 

𝜂𝑔𝑎𝑠,𝑐𝑜𝑙𝑑 [%] 65.8 58.1 

 

 
 

Figure 4: Gasifier temperature trends during the 

experimental test 

 

 
 

Figure 5: Gasifier cold gas efficiency Vs. moisture and ER 

 
 

Figure 6: Wet syngas HHV Vs. moisture and ER 

 

 
 

Figure 7: Volume percentage of tar in the syngas Vs. 

moisture and ER 

 

 

4 CONCLUSIONS 

 

The developed equilibrium model predicts with good 

accuracy hemp hurd gasification. In fact, a cold gas 

efficiency of about 58% and a syngas heating value of 

about 4.4 MJ/Nm3 are obtained from the model with 10% 

of biomass moisture and equivalence ratio ER = 0.3; these 

values are in line with literature data about fixed bed 

gasification. Model simulations varying ER in the range 

0.2-0.4 and varying M in the range 0-20% showed a good 

dependency of the gasifier with the ER value. 
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